
Examples of useful proof techniques

Shikhara Bhat

1 Proof by Contradiction

Proof by contradiction is a widely used proof technique that can be very suc-
cessful in convincing you why your theorem should be true by exploring the
consequences of the theorem being false.

Big Idea: Assume the focal statement is false. Show that this assumption
leads to a contradiction, inconsistency, or other absurdity. Conclude that
the focal statement must thus be true.

Some Examples

Theorem 1.1

There are infinitely many primes

Proof. Assume the contrary. Let us say the finitely many primes are p1, p2, . . . , pn.
Consider the number p := 1 + (Πn

i=1pi). The number p is clearly larger than
all of p1, . . . , pn, but is not divisible by any of them and thus must be a prime.
Thus, the assumption that we can have a finite list of primes p1, . . . , pn must
be wrong.

Theorem 1.2√
2 is irrational

Proof. Assume the contrary. If
√
2 is indeed rational, then, by definition, we

can find two integers p and q ̸= 0 such that they share no common factors and
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√
2 = p/q. We now calculate

√
2 =

p

q
(1.1)

⇒ 2 =

(
p

q

)2

(1.2)

⇒ 2p2 = q2 (1.3)

From equation 1.3, we can conclude that q2 is twice an integer and is, therefore,
an even number. If q2 is even, q must also be even. Thus, we can find an integer
r such that q = 2r. Substituting this into Eq. 1.3, we obtain

2p2 = (2r)2 (1.4)

⇒ 2p2 = 4r2 (1.5)

⇒ p2 = 2r2 (1.6)

Thus, p2 is also an even number, and therefore, so is p.
We have now found that p and q are both even numbers and thus share

2 as a common factor. However, we initially assumed that p and q shared no
common factors. Thus, we have arrived at a logical contradiction. Since our
assumption that

√
2 was rational has led to a contradiction, we conclude that√

2 is irrational.

Theorem 1.3

The set of real numbers in the interval [0, 1] contains more elements than
the set of natural numbers N = {1, 2, 3, 4, · · · }

Proof. Assume the contrary. If [0, 1] and N have the same number of elements,
it must be possible to create a pairing between each element of [0, 1] and each
element of N. Let us use ri to denote the element of [0, 1] that has been paired
with the ith natural number.

Each element of [0, 1] can be represented by its decimal expansion in the
form 0.d1d2d3d4 . . ., where dj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is the number at the
jth decimal point. Thus, we have the representation ri = 0.ri1ri2ri3 . . . for
every ri in [0, 1]. Consider the number c = 0.c1c2 . . . ∈ [0, 1] given by choosing
ci ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {rii}. In words, we choose the number in the ith

position of the decimal expansion of c such that it is different from the number
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in the ith position of the decimal expansion of ith real number ri:

r1 = 0.r11r12r13r14r15 . . .

r2 = 0.r21r22r23r24r25 . . .

r3 = 0.r31r32r33r34r35 . . .

r4 = 0.r41r42r43r44r45 . . .

r5 = 0.r51r52r53r54r55 . . .

... =
...

For every i ∈ N, the number c differs from ri in the ith position. In other words,
c cannot equal any ri. However, we had assumed that every number in [0, 1] can
be associated with a natural number via the pairing n → rn. We have arrived
at a contradiction. We thus conclude that our initial assumption that such a
pairing exists is false, and therefore see that the set [0, 1] has more elements
than the set N.

2 Proof by Induction

Proof by induction works well when we want to prove that some statement P (n)
holds for all natural numbers n. The idea is to prove that if the statement holds
for a number n, it must hold for the next number, and thus, we have a sort of
‘domino effect’.

Big Idea: Suppose you have a statement P (n) concerning a number n.
To prove that P (n) holds for all n, we use a two step process.

Step 1 (base case): Prove P (1), i.e. that the statement holds for 1.
Step 2 (induction step): Show that if P (k) is true, then P (k+ 1) must

also be true.
The two steps together prove that P (1) is true, and therefore P (1+1) =

P (2) is true, and therefore P (2 + 1) = P (3) is true, and....

Some Examples

Theorem 2.1

A formula for the sum of the first n natural numbers:

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
∀ n ∈ N

Proof. Let Sn := 1 + 2 + 3 + . . .+ n. Then, our claim is that Sn = n(n+ 1)/2
for any natural number n.

Step 1 (base case)
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S1 = 1 =
1(1 + 1)

2

Thus, the statement is true for n = 1.

Step 2 (induction step)

Assume the statement is true for n = k. Thus, Sk = k(k + 1)/2. This is
our ‘induction hypothesis’. We can now calculate Sk+1 as

Sk+1 = 1 + 2 + 3 + . . .+ k︸ ︷︷ ︸
Sk

+(k + 1) (2.1)

=
k(k + 1)

2
+ (k + 1) (by induction hypothesis) (2.2)

=
k(k + 1) + 2(k + 1)

2
(2.3)

=
(k + 1)(k + 2)

2
(2.4)

⇒ Sk+1 =
(k + 1)(k + 1 + 1)

2
(2.5)

Thus, if our statement is true for some n = k, we have proven that it is also
true for n = k + 1.

Since we already proved that the statement holds for n = 1, it thus holds
for every n ∈ N.

Theorem 2.2

(Bernoulli’s inequality) Given any real number x ≥ −1,

(1 + x)n ≥ 1 + nx ∀ n ∈ N

Proof. Step 1 (base case)

(1 + x)1 = 1 + x = 1 + (1) ∗ x∀x ≥ 1

Thus, the statement is true for n = 1.

Step 2 (induction step)

Assume the statement is true for n = k. Thus, (1 + x)k ≥ 1 + kx∀x ≥ −1.
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We now observe that

(1 + x)k+1 = (1 + x)k(1 + x) (2.6)

≥ (1 + kx)(1 + x) (by induction hypothesis) (2.7)

= 1 + kx+ x+ kx2 (2.8)

≥ 1 + kx+ x = 1 + (k + 1)x (2.9)

Thus, if our statement is true for some n = k, we have proven that it is also
true for n = k + 1.

Since we already proved that the statement holds for n = 1, it thus holds
for every n ∈ N.

Theorem 2.3

Let f(x) = xex, and let f (n)(x) denote the nth derivative dnf
dxn . Then,

f (n)(x) = (x+ n)ex ∀ n ∈ N

Proof. Step 1 (base case)

f (1)(x) =
df

dx
=

d

dx
(xex) = x

dex

dx
+ ex

dx

dx
= xex + ex = (x+ 1)ex

Thus, the statement is true for n = 1.

Step 2 (induction step)

Assume the statement is true for n = k. Thus, f (k)(x) = (x + k)ex. We
now observe that

f (k+1)(x) =
d

dx
f (k)(x) (2.10)

=
d

dx
((x+ k)ex) (2.11)

=
d

dx
(xex) + k

dex

dx
(2.12)

We already calculated the first term on the RHS when computing the base case
above. Using that result, we obtain

f (k+1)(x) = (x+ 1)ex + kex = (x+ k + 1)ex (2.13)

which is the desired expression. Thus, if our statement is true for some n = k,
we have proven that it is also true for n = k + 1. Since we already proved that
the statement holds for n = 1, it thus holds for every n ∈ N.
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Exercise 1

What is wrong with the following proof?

Claim: All birds are the same color.

Proof:

Let P (n) denote the statement that any collection of n birds are the same
color. We seek to prove that P (n) is true for every n ∈ N. We will proceed
by induction.

Step 1 (base case): Clearly, a bird is the same color as itself, and thus
a collection of 1 birds all have the same color. Thus, P (1) is true.

Step 2 (induction step:) Let us assume that any collection of k birds are
the same color. Let B = {b1, b2, . . . , bk+1} denote a collection of k + 1
birds. Let B0 = {b1, b2, . . . , bk}. Since B0 is a collection of k birds, by our
induction hypothesis, we conclude that all birds in B0 are the same color.
Now let let B1 = {b2, . . . , bk, bk+1}. B1 is also a collection of k birds, and
thus every bird in B1 is also the same color by the induction hypothesis.
Since the bird b2 occurs in both B0 and B1, we conclude that every bird
in B0 ∪ B1 is the same color. Since B0 ∪ B1 = B (in words: every bird
in our collection B is either in B0, in B1, or both), we conclude that our
collection of k + 1 birds are all the same color.

Thus, if our statement is true for some n = k, we have proven that it
is also true for n = k + 1. Since we already proved that the statement
holds for n = 1, it thus holds for every n ∈ N. We have thus proved that
all birds are the same color.

Since empiricists have already gathered evidence for the existence of
both blackbirds and bluebirds, a corollary of the above proof is that blue
and black are the same color.

3 The Pigeonhole Principle

The pigeonhole principle is essentially a counting argument. It arises from the
following simple observation

Big Idea: If n pigeons live in m holes and n > m, then at least one hole
must have more than one pigeon.

This elementary observation can be astonishingly useful when proving state-
ments about discrete objects.
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Some Examples

Theorem 3.1

Let G be a graph on n vertices with no self-loops (i.e. a vertex cannot
connect to itself) and no multi-edges (i.e. two vertices may share at most
one edge). If n ≥ 2, at least two vertices in G have the same number of
edges.

Proof. Let v1, v2, . . . , vn be the vertices of G. Since the graph does not have
self-loops or multi-edges, each vertex can only have at most n− 1 edges. Thus,
we need to assign one of n − 1 possible choices of the number of edges (the
‘holes’) to each of n vertices (the ‘pigeons’). By the pigeonhole principle, we
conclude that at least two vertices must have the same number of edges.

Theorem 3.2

(Dirichlet approximation theorem) Let α be any irrational number. It is
possible to find infinitely many integers p, q ∈ Z such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

. In words, any irrational number α can be approximated arbitrarily well
by rationals p/q.

Proof. Let N > 0 be a positive integer. For each k = 0, 1, 2, . . . , N , we can
rewrite the number kα as kα = zk + xk, where zk ∈ Z is the integer part of kα
and 0 ≤ xk < 1 is the non-integer part.

Divide the interval [0, 1] into N intervals via the partition 0, 1/N, 2/N, . . . , 1.
There are now N +1 numbers xk and N intervals. By the pigeonhole principle,
at least one interval must therefore contain two of the numbers xk. Let xki

, xkj

be the two numbers that share the same interval, and without loss of generality,
assume ki < kj . Since they are within the same interval, we must have |xkj

−
xki | < 1/N . We now observe that

|(kj − ki)α− (zkj
− zki

)| = |(kjα− zkj
)− (kiα− zki

)| = |xkj
− xki

| < 1

N

Dividing both sides by kj − ki (which can be taken inside the modulus since we
assumed kj − ki > 0), we obtain∣∣∣∣α−

zkj − zki

kj − ki

∣∣∣∣ < 1

N(kj − ki)
<

1

(kj − ki)2

Letting p = zkj
− zki

and q = kj − ki, we obtain the desired result.
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4 Clever non-constructive proofs

Big Idea: To prove a statement of the form ‘there exists an object satis-
fying certain properties’, it is not necessary to explicitly find or construct
such an object.

Theorem 4.1

It is possible to find two irrational numbers n and m such that nm is
rational.

Proof. Let x = (
√
2)

√
2. We already know that

√
2 is irrational. If x is rational,

then we are done, with n = m =
√
2. Thus, assume x is irrational. We have

x
√
2 =

(
(
√
2)

√
2
)√

2

= (
√
2)2 = 2

which is rational, and thus n = (
√
2)

√
2,m =

√
2 provide the desired pair of

irrationals.

Theorem 4.2

Color a sphere such that 90% of its surface area is red and the remaining
10% is blue. Regardless of the pattern you choose for the coloring, it is
always possible to inscribe a cube in this sphere such that no vertex of the
cube is blue.

Proof. Surprisingly, we will prove this statement using probability theory. Given
the focal sphere S2, let Ω be the set of all possible ways to inscribe a cube on
S2. We are interested in the probabilistic experiment of choosing an orientation
ω uniformly at random from Ω (in words, just picking an arbitrary orientation
of the cube at random).

For i = 1, 2, . . . , 8, let Xi be the random variable given by

Xi(ω) =

{
1 ; ith vertex of the cube is red in the orientation ω

0 ; otherwise

Since 90% of the area of the sphere is red, we have E[Xi] = 0.9. The expected
number of red vertices associated with a random orientation of the cube is then

E

[
8∑

i=1

Xi

]
=

8∑
i=1

E[Xi] = 8E[Xi] = 8× 0.9 = 7.2

Since the number of red vertices is always integer-valued and 7.2 > 7, we con-
clude that there must exist at least one orientation ω ∈ Ω such that all 8 vertices
are red.
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5 Some advanced clever proofs

The theorems/proofs in this section are slightly more advanced and may not be
accessible if you are relatively new (< undergraduate) to mathematics.

Theorem 5.1

The harmonic series diverges:

1 +
1

2
+

1

3
+

1

4
+ . . . = ∞

Proof. Assume the contrary. Let H(x) =
∞∑
i=1

1/n. Let fn(x) :=
1
nχ[0,n](x). Note

that lim
n→∞

fn(x) = 1 and fn(x) ≤ H(x) < ∞ ∀ x. However,∫
R

lim
n→∞

fn(x)dx =

∫
R

0 dx = 0

and

lim
n→∞

∫
R

fn(x)dx = lim
n→∞

1 = 1

which contradicts Lebesgue’s dominated convergence theorem. Thus, H = ∞.

Exercise 2

Why can’t we adapt the proof of theorem 5.1 to show that
∞∑
i=1

2−n diverges?

Theorem 5.2

Let f, g, h ∈ L2(R) and let ∗ denote convolution. Then, convolution is
associative, i.e.

(f ∗ g) ∗ h = f ∗ (g ∗ h)

Proof. Let ϕ̂ denote the Fourier transform of ϕ ∈ L2(R). We have

((f ∗ g) ∗ h)ˆ = (f ∗ g)̂ ĥ = f̂ ĝĥ = f̂(g ∗ h)̂ = (f ∗ (g ∗ h))ˆ

Since the Fourier transform is a bounded operator on the Hilbert space L2(R),
it is invertible, thus yielding the desired result.
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Theorem 5.3

(Uniqueness of solutions to the heat equation) Let Ω ⊂ Rn be open and
bounded. Let ΩT := Ω × (0, T ] for any T > 0, and use ΓT := ΩT \ ΩT to
denote the boundary. Let u, v ∈ C2

1 (ΩT ) satisfy the heat equation on ΩT ,
i.e.

ut −∆u = vt −∆v = f on ΩT

u(·, 0) = v(·, 0) = g on ΓT

where f ∈ C1
1 (ΩT ) ∩ L∞(ΩT ), g ∈ C1(ΓT ) ∩ L∞(ΓT ), and subscript indi-

cates partial differentiation. Then, u = v.

Proof. Define w := u − v. Since u and v satisfy the given heat equation, w
satisfies

wt −∆w = 0 on ΩT (5.1)

w = 0 on ΓT (5.2)

Let

E(t) :=
1

2

∫
ΩT

w2(x, t)dx (5.3)

Differentiating both sides with respect to time, we find

E′(t) =

∫
ΩT

wwtdx =

∫
ΩT

w∆wdx (5.4)

where we have substituted wt from Eq. 5.1. Using integration by parts, we now
find ∫

ΩT

w∆wdx = −
∫
ΩT

∇w∇wdx+

∫
ΓT

w∆wγidx

︸ ︷︷ ︸
=0 by Eq. 5.2

(5.5)

Substituting Eq. 5.5 into Eq. 5.4, we obtain

E′(t) = −
∫
ΩT

(∇w)2dx ≤ 0 (5.6)

and thus see that E(t) is a decreasing function of time. From the definition 5.3,
E is the integral of a non-negative function and therefore E(t) ≥ 0. Further,
from the initial condition 5.2, we obtain E(0) = 0. We hence conclude that
E(t) ≡ 0. However, from the definition (5.3), this can only happen if u = v
almost everywhere. Since u and v are C2

1 (ΩT ), a.e. equality implies pointwise
equality.

The next proof provides an example of a technique that requires the axiom of
choice.
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Theorem 5.4

Let (R,M , µ) denote the reals equipped with the Lebesgue measure and
the usual σ-algebra. Then, M ̸= 2R. In other words, non-measurable sets
exist.

Proof. Define a relation ∼ from [0, 1] to [0, 1] by x ∼ y ⇐⇒ x − y ∈ Q. It
is easy to see that ∼ is an equivalence relation. Let {Eα}α∈I be the set of
equivalence classes of [0, 1] with respect to ∼.

By the axiom of choice, we can choose exactly one element xα from each
equivalence class Eα. Let V = {xα|α ∈ I} be this set of choices. We will show
that V is not measurable.

Let {ri}i∈N be an enumeration of the rationals in [−1, 1], and define En =
{rn + x|x ∈ E}. Clearly, En ∩ Em = ∅ ∀ n ̸= m. Since E ⊂ [0, 1], we can also
see that En ⊂ [−1, 2] ∀ n.

Claim. [0, 1] ⊂ Ek for some k ∈ N

Proof. Let x ∈ [0, 1]. Since {Eα} is obtained from an equivalence relation on
[0, 1], we have [0, 1] =

⋃
α∈I

Eα. Thus, x ∈ Eα for some α ∈ I. But

x ∈ Eα ⇒ x ∼ xα ⇒ x− xα ∈ Q

Since we additionally also have x, xα ∈ [0, 1], we conclude that x − xα ∈ Q ∩
[−1, 1]. Thus, x−xα must be in the enumeration r1, . . . , rn. Let us say x−xα =
rk. Rearranging, we obtain x = xα + rk and thus conclude that x ∈ Ek.

We now have

[0, 1] ⊂
∞⋃

n=1

En ⊂ [−1, 2] (5.7)

Assume V ∈ M . Since µ is translation invariant and µ(Q) = 0, we must have
En ∈ M ∀ n and µ(En) = µ(V ) ∀ n.
Case 1. µ(V ) = 0

If µ(V ) = 0, we find

µ(

∞⋃
n=1

En) =

∞∑
n=1

µ(En) = 0

However, from Eq. 5.7, we know that [0, 1] ⊂
∞⋃

n=1
En. Further,

µ([0, 1]) = 1 > 0. This is a contradiction, since A ⊂ B ⇒ µ(A) ≤
µ(B).

Case 2. µ(V ) > 0
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If µ(V ) > 0, we instead have

µ(

∞⋃
n=1

En) =

∞∑
n=1

µ(En) = µ(V )

∞∑
n=1

1 = ∞

However, from Eq. 5.7, we know that
∞⋃

n=1
En ⊂ [−1, 2] and thus must

also have µ(
∞⋃

n=1
En) ≤ µ([−1, 2]). Our calculation of µ(

∞⋃
n=1

En) thus

yields ∞ < 3, which is a contradiction,

Since both cases lead to a contradiction, we conclude that V ̸∈ M .
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